1. Qing-hui LIU, Bo TAN, Zhi-xiong WEN and Jun WU, Measure zero spectrum of a class of Schrödinger operators, J. Statist. Phys. 106 (2002), no. 3-4, 681--691.
2. Qing-hui LIU and Zhi-ying WEN, Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with Sturmian potentials, Potential Analysis 20:1(2004), 33-59.
3. Qing-hui LIU, Yan Hui QU, Uniform convergence of Schrodinger cocycles over simple Toeplitz subshift, Ann. Henri Poincare 12(2011), 153--172.
4. Shen FAN, Qinghui LIU, Zhiying WEN, Gibbs-like measure for spectrum of a class of one-dimensional Schrödinger operator with Sturm potentials, Ergodic Theory and Dynamical Systems 31:6(2011), 1669-1695.
5. Qing-hui LIU, Yan Hui QU, Uniform convergence of Schrodinger cocycles over bounded Toeplitz subshift, Annales Henri Poincare, 13:6(2012), 1483--1500.
6. Qing-hui LIU, Yan Hui QU, Zhiying WEN, the fractal dimensions of the spectrum of Sturm Hamiltonian, Advance in Mathematics, 257(2014), 285--336.
7. Qing-hui LIU, Yan Hui QU, On the Hausdorff Dimension of the Spectrum of the Thue–Morse Hamiltonian, Communications in Mathematical Physics, 338(2015), 867--891.
8. David DAMANIK, Anton GORODETSKI, Qing-hui LIU, Yan Hui QU, Transport exponents of Sturmian Hamiltonians, J. Funct. Anal. 269 (2015), 1404-1440.
9. Qing-hui LIU, Yan-hui QU, Xiao YAO, Unbounded Trace Orbits of Thue–Morse Hamiltonian, J. Stat. Phys. 166:6(2017), 1509-1557.
10. Bernard HELFFER, Qinghui LIU, Yanhui QU, Qi ZHOU, Positive Hausdorff Dimensional Spectrum for the Critical Almost Mathieu Operator, Communications in Mathematical Physics, 368:1 (2019), 369--382.
11. Qing-hui LIU, Yan-hui QU, Xiao YAO, The spectrum of Period-Doubling Hamiltonian, Communications in Mathematical Physics, 394:2 (2022).
12. Qing-hui LIU, Zhi-yi TANG, The Hausdorff dimension of spectrum of a class of generalized Thue-Morse Hamiltonians, Acta Mathematica Scientia, English Series, 43B:5(2023),1--8.