Books published:
[02] Guoliang Wang, Lecture Notes on General Topology, World Scientific, Singapore, 152 pp, ISBN: 978-981-122-741-7, eISBN: 978-981-122-742-4, 2021.01.
This is a hard copy version with a minor collection of update and revision based on [01], internationally on sale.
[01] Guoliang Wang, Lecture Notes on General Topology, HEP Studies in Modern Mathematics, Higher Education Press, Beijing, 140 pp, ISBN: 978-7-04-052749-0, 2019.10.
Preprints:
[04] L. Chen, Y.T. He and D.G.L. Wang, Clocks are e-positive, arXiv: 2410.07581.
[03] D.Q.B. Tang and D.G.L. Wang, Positive e-expansions of the chromatic symmetric functions of KPKPs, twinned lollipops, and kayak paddles, arXiv: 2408.01385.
[02] D.Q.B. Tang, D.G.L. Wang and M.M.Y. Wang, The spiders S(4m+2, 2m, 1) are e-positivite, arXiv: 2405.04915.
[01] J.-Y. Thibon and D.G.L. Wang, A noncommutative approach to the Schur positivity of chromatic symmetric functions, arXiv: 2305.07858.
Papers published/accepted:
[44] E.Y.J. Qi, D.Q.B. Tang and D.G.L. Wang, Chromatic symmetric functions of conjoined graphs, arXiv: 2406.01418, to be appeared in Front. Math.
[43] D.G.L. Wang, All cycle-chords are e-positive, arXiv: 2405.01166, to be appeared in Ann. Comb.
[42] D.G.L. Wang and J.Z.F. Zhou, Composition method for chromatic symmetric functions: Neat noncommutative analogs, arXiv: 2401.01027, to be appeared in Adv. Appl. Math.
[41] H. Lu, D.G.L. Wang, and Q. Yu, Characterization of Tutte-type condition and graph factors, devoted to the 80th birthday of Professor Guizhen Liu, SCIENTIA SINICA Mathematica (in Chinese) 54(11) (2024), 1821--1828.
[40] M.Y.C. Liu and D.G.L. Wang, A unimodal sequence with mode at a quarter length, J. Difference Equ. Appl. 29(7) (2023), 763--778.
[39] D.G.L. Wang and M.M.Y. Wang, The e-positivity and Schur positivity of some spiders and broom trees, Discrete Appl. Math. 325 (2023), 226--240.
[38] D.G.L. Wang and M.M.Y. Wang, The e-positivity of two classes of cycle-chord graphs, J. Alg. Combin. 57(2) (2023), 495--514.
[37] Z.C. Lin, D.G.L. Wang, and T. Zhao, A decomposition of ballot permutations, pattern avoidance and Gessel walks, J. Combin. Theory Ser. A 191 (2022), 105644.
[36] H. Lu and D.G.L. Wang, Surface embedding of non-bipartite k-extendable graphs, Ann. Appl. Math. 38 (2022), 1--24.
[35] D.G.L. Wang and T.Y. Zhao, The peak and descent statistics over ballot permutations, Discrete Math. 345(3) (2022), 112739.
[34] D.G.L. Wang, M.M.Y. Wang, and S.Q. Zhang, Determining the edge metric dimension of the generalized Petersen graph P(n,3), J. Comb. Optim. 43 (2022), 460--496.
[33] E.Y.H. Li, G.M.X. Li, D.G.L. Wang, and A.L.B. Yang, The twinning operation on graphs does not always preserve e-positivity, Taiwanese J. Math. 25 (2021), no. 6, 1089--1111.
[32] Z.C. Lin, S.-M. Ma, D.G.L. Wang, and L.Q. Wang, Positivity and divisibility of enumerators of alternating descents, Ramanujan J. 58 (2022), 203--228.
[31] D.G.L. Wang and J.J.R. Zhang, Geometry of limits of zeros of polynomial sequences of type (1,1), Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 785--803.
[30] D.G.L. Wang and M.M.Y. Wang, A combinatorial formula for the Schur coefficients of chromatic symmetric functions, Discrete Appl. Math. 285 (2020), 621--630.
[29] D.G.L. Wang and J.J.R. Zhang, A Toeplitz property of ballot permutations and odd order permutations, Electron. J. Combin. 27(2) (2020), P2.55.
[28] Z.C. Lin, D.G.L. Wang, and J. Zeng, Around the q-binomial-Eulerian polynomials, European J. Combin. 78 (2019), 105--120.
[27] D.D.D. Jin and D.G.L. Wang, On the minimum vertex cover of generalized Petersen graphs, Discrete Appl. Math. 266 (2019), 309--318.
[26] S.-M. Ma, T. Mansour, D.G.L. Wang, and Y.-N. Yeh, Several variants of the Dumont differential system and permutation statistics, Sci. China Math. 62(10) (2019), 2033--2052.
[25] H. Lu and D.G.L. Wang, A Tutte-type characterization for graph factors, SIAM J. Discrete Math. 31(2) (2017), 1149--1159.
[24] H. Lu and D.G.L. Wang, The number of disjoint perfect matchings in semi-regular graphs, Appl. Anal. Discrete Math. 11(1) (2017), 11--38.
[23] H. Hu, D.G.L. Wang, F. Zhao, and T.Y. Zhao, Convolution preserves partial synchronicity of log-concave sequences, Math. Inequal. Appl. 20(1) (2017), 91--103.
[22] J.L. Gross, T. Mansour, T.W. Tucker, and D.G.L. Wang, Root geometry of polynomial sequences II: Type (1,0), J. Math. Anal. Appl. 441(2) (2016), 499--528.
[21] D.G.L. Wang, Tilings of parallelograms by similar isosceles triangles, Math. Intelligencer 38(3) (2016), 24--29.
[20] J.L. Gross, T. Mansour, T.W. Tucker, and D.G.L. Wang, Iterated claws have real-rooted genus polynomials, Ars Math. Contemp. 10(2) (2016), 255--268.
[19] J.L. Gross, T. Mansour, T.W. Tucker, and D.G.L. Wang, Combinatorial conjectures that imply local log-concavity of graph genus polynomials, European J. Combin. 52(A) (2016), 207--222.
[18] J.L. Gross, T. Mansour, T.W. Tucker, and D.G.L. Wang, Root geometry of polynomial sequences I: Type (0,1), J. Math. Anal. Appl. 433(2) (2016), 1261--1289.
[17] J.L. Gross, T. Mansour, T.W. Tucker, and D.G.L. Wang, Log-concavity of the genus polynomials of Ringel ladders, Electron. J. Graph Theory & Appl. 3(2) (2015), 109--126.
[16] J.L. Gross, T. Mansour, T.W. Tucker, and D.G.L. Wang, Log-concavity of combinations of sequences and applications to genus distributions, SIAM J. Discrete Math. 29(2) (2015), 1002--1029.
[15] T. Mansour and D.G.L. Wang, Recurrence relations in counting the pattern 13-2 in flattened permutations, J. Difference Equ. Appl. 21(1) (2015), 16--36.
[14] H. Lu and D.G.L. Wang, Surface embedding of (n,k)-extendable graphs, Discrete Appl. Math. 179 (2014), 163--173.
[13] D.G.L. Wang, On colored set partitions of type B_n, Cent. Eur. J. Math. 12(9) (2014), 1372--1381.
[12] H. Lu, D.G.L. Wang, and Q. Yu, On the existence of general factors in regular graphs, SIAM J. Discrete Math. 27(4) (2013), 1862--1869.
[11] T. Mansour, M. Shattuck, and D.G.L. Wang, Recurrence relations for patterns of type (2,1) in flattened permutations, J. Difference Equ. Appl. 20(1) (2014), 58--83.
[10] T. Mansour, M. Shattuck, and D.G.L. Wang, Counting subwords in flattened permutations, J. Combin. 4(3) (2013), 327--356.
[09] H. Lu and D.G.L. Wang, On Cui-Kano's characterization problem on graph factors, J. Graph Theory 74(3) (2013), 335--343.
[08] D.G.L. Wang, On universal tilers, Geom. Dedicata 164(1) (2013), 385--393.
[07] D.G.L. Wang, Determining all universal tilers, Discrete Comput. Geom. 49(2) (2013), 302--316.
[06] D.G.L. Wang and T.Y. Zhao, The real-rootedness and log-concavities of coordinator polynomials of Weyl group lattices, European J. Combin. 34(2) (2013), 490--494.
[05] W.Y.C. Chen, T.X.S. Li, and D.G.L. Wang, A bijection between atomic partitions and unsplitable partitions, Electron. J. Combin. 18(1) (2011), #P7.
[04] W.Y.C. Chen and D.G.L. Wang, Singletons and adjacencies of set partitions of type B, Discrete Math. 311(6) (2011), 418--422.
[03] W.Y.C. Chen and D.G.L. Wang, The limiting distribution of the q-derangement numbers, European J. Combin. 31(8) (2010), 2006--2013.
[02] W.Y.C. Chen and D.G.L. Wang, Minimally intersecting set partitions of type B , Electron. J. Combin. 17 (2010), #R22.
[01] W.Y.C. Chen, D.G.L. Wang, and I.F. Zhang, Partitions of Z_n into arithmetic progressions, European J. Combin. 30(4) (2009), 764--773.